Proteomic analyses of sheep (ovis aries) embryonic skeletal muscle

Author:

Wang Xinyue,Shi Tianpei,Zhao Zhida,Hou Haobin,Zhang Li

Abstract

AbstractThe growth and development of embryonic skeletal muscle plays a crucial role in sheep muscle mass. But proteomic analyses for embryonic skeletal development in sheep had been little involved in the past research. In this study, we explored differential abundance proteins during embryonic skeletal muscle development by the tandem mass tags (TMT) and performed a protein profile analyses in the longissimus dorsi of Chinese merino sheep at embryonic ages Day85 (D85N), Day105 (D105N) and Day135 (D135N). 5,520 proteins in sheep embryonic skeletal muscle were identified, and 1,316 of them were differential abundance (fold change ≥1.5 and p-value < 0.05). After the KEGG enrichment analyses, these differential abundance proteins were significant enriched in the protein binding, muscle contraction and energy metabolism pathways. After validation of the protein quantification with the parallel reaction monitoring (PRM), 41% (16/39) significant abundance proteins were validated, which was similar to the results of protein quantification with TMT. All results indicated that D85N to D105N was the stage of embryonic muscle fibers proliferation, while D105N to D135N was the stage of their hypertrophy. These findings provided a deeper understanding of the function and rules of proteins in different phases of sheep embryonic skeletal muscle growth and development.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference47 articles.

1. Guller, I. & Russell, A. P. MicroRNAs in skeletal muscle: their role and regulation in development, disease and function. J. Physiol. 588, 4075–4087 (2010).

2. Buckingham, M. 15 The formation of skeletal muscle: from somite to hand. J. Anat. 201, 421 (2002).

3. Gabrielle Kardon, J. K. C. & Clifford, J. T. Local Extrinsic Signals Determine Muscle and Endothelial Cell Fate and Patterning in the Vertebrate Limb. Developmental Cell 3(4), 0–545 (2002).

4. Bentzinger, C. F., Wang, Y. X. & Rudnicki, M. A. Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4 (2012).

5. Tajbakhsh, S. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J. Intern. Med. 266, 372–389 (2010).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3