Quantitative salivary gland SPECT/CT using deep convolutional neural networks

Author:

Park Junyoung,Lee Jae Sung,Oh Dongkyu,Ryoo Hyun Gee,Han Jeong Hee,Lee Won Woo

Abstract

AbstractQuantitative single-photon emission computed tomography/computed tomography (SPECT/CT) using Tc-99m pertechnetate aids in evaluating salivary gland function. However, gland segmentation and quantitation of gland uptake is challenging. We develop a salivary gland SPECT/CT with automated segmentation using a deep convolutional neural network (CNN). The protocol comprises SPECT/CT at 20 min, sialagogue stimulation, and SPECT at 40 min post-injection of Tc-99m pertechnetate (555 MBq). The 40-min SPECT was reconstructed using the 20-min CT after misregistration correction. Manual salivary gland segmentation for %injected dose (%ID) by human experts proved highly reproducible, but took 15 min per scan. An automatic salivary segmentation method was developed using a modified 3D U-Net for end-to-end learning from the human experts (n = 333). The automatic segmentation performed comparably with human experts in voxel-wise comparison (mean Dice similarity coefficient of 0.81 for parotid and 0.79 for submandibular, respectively) and gland %ID correlation (R2 = 0.93 parotid, R2 = 0.95 submandibular) with an operating time less than 1 min. The algorithm generated results that were comparable to the reference data. In conclusion, with the aid of a CNN, we developed a quantitative salivary gland SPECT/CT protocol feasible for clinical applications. The method saves analysis time and manual effort while reducing patients’ radiation exposure.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3