Author:
Wang Xulong,Liu Jianxin,Li Jian,Chen Hang
Abstract
AbstractTo avoid the problem of the traditional methods consuming large computational resources to calculate the kernel matrix and 2D discrete convolution, we present a novel approach for 3D gravity and magnetic modelling. This method combines the midpoint quadrature method with a 2D fast Fourier transform (FFT) to calculate the gravity and magnetic anomalies with arbitrary density or magnetic susceptibility distribution. In this scheme, we apply the midpoint quadrature method to calculate the volume element of the integral. Then, the convolution of the weight coefficient matrix with density or magnetization is efficiently computed via the 2D FFT. Finally, the accuracy and efficiency of the proposed algorithm are validated by using an artificial model and a real topography model. The numerical results demonstrate that the proposed algorithm’s computation time and the memory requirement are decreased by approximately two orders of magnitude compared with the space-wavenumber domain method.
Funder
Independent exploration of graduate students at Central Sout University
National Natural Science Foundation of China
Hunan Provincial Innovation Foundation for Postgraduate
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献