Experimental investigation on the effect of nano-silica on reinforced concrete Beam-column connection subjected to Cyclic Loading

Author:

Shyamala G.,Hemalatha B.,Devarajan Yuvarajan,Lakshmi Chairma,Munuswamy Dinesh Babu,Kaliappan Nandagopal

Abstract

AbstractBeam-column joints are crucial load transmission zones because they face concentrated forces from both the beams and the columns. High shear and axial stresses caused by these concentrated forces in the area of the joint may result in decreased joint strength. This article proposes a new beam-to-column connection developed for precast concrete-resisting frames. Concrete mixtures are enhanced mechanically by adding nano silica as it increases compressive strength, flexural strength, and abrasion resistance. Within the concrete, it creates a solid, gel-like matrix that fills voids and strengthens the whole construction. In this study, three reinforced concrete beam-column joint specimens were cast with fly ash, the other three with nano-silica and fly ash, and one sample with nano-silica and a control mix without admixtures was cast. Specimen cast using fly ash and nano-silica is subjected to cyclic loading after 28 days of curing. A load capacity of 100 kN was imposed on the column during testing. It was observed that a gradual increase in fly ash decreased the compressive and flexural strength of the beam-column joints. This decrease in strength was addressed by adding 2.5% nano-silica. Nano silica acts as a nucleus to bond tightly with cement particles during hydration. The results showed that the flexural strength equivalent to that of a controlled specimen can be achieved by adding nano-silica at 2.5% and fly ash at 60%. The highest loading of 38.1 kN can be applied to the specimen with nano-silica without fly ash. Although a higher axial compression ratio can improve the bearing capacity and initial stiffness, it can also reduce deformation capacity and flexibility.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3