Novel study on enhancing the ignition pattern of waste and inedible feedstock in a modified diesel engine-enhancing its effectiveness as renewable alternative

Author:

Rajesh K.,Bibin Chidambaranathan,Natarajan M. P.,Ponnuvel S.,Devarajan Yuvarajan,Raja T.,Kaliappan Nandagopal

Abstract

AbstractThe objective of the present investigation is to enhance the performance of diesel engine using Capparis spinoza fatty acid distillate biodiesel (CFAB100) at various compression ratios. The experiments were carried out at compression ratios of 16.5:1, 17.5:1, 18.5:1, and 19.5:1. It was noted that an increase in compression ratio from 16.5 to 18.5 resulted in better engine characteristics for CFAB100 and reduced at compression ratio 19.5. Brake-specific fuel consumption of CFAB100 decreased from 0.42 to 0.33 kg/kWh with an increase in compression ratio. The brake thermal efficiency of CFAB100 at a compression ratio of 16.5 is 29.64% lower than diesel, whereas it is 11.32% low at a compression ratio of 18.5. The brake thermal efficiency of CFAB100 is 26.03% higher at a compression ratio of 18.5 compared to 16.5. Due to shorter ignition delay and reduced premixed combustion, the net heat release rate of CFAB100 is lower than diesel at all compression ratios. The peak cylinder pressure for diesel is 56.21 bar, and CFAB100 at compression ratios 16.5, 17.5, 18.5, and 19.5 were 52.36, 55.12, 61.02 and 58.25 bar at full load condition. CFAB100, at a compression ratio of 18.5, had the highest nitrogen oxide emissions (2400 ppm). Carbon monoxide, unburnt hydrocarbon, and smoke showed an average reduction of 46.58%, 40.68%, and 54.89%, respectively, when the compression ratio varied between 16.5 and 19.5. At an optimum compression ratio of 18.5, the CFAB100 resulted in improved performance and emission characteristics that can replace diesel to a possible extent.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3