Calculation of hole spacing and surrounding rock damage analysis under the action of in situ stress and joints

Author:

Tian Xingchao,Tao Tiejun,Liu Xia,Jia Jian,Xie Caijin,Lou Qianxing,Chen Qingzhi,Zhao Zhenhua

Abstract

AbstractIn situ stress and joints have a significant impact on the propagation and attenuation pattern of blast stress waves, and they are two important factors that must be considered for tunnel blasting hole network deployment. This paper proposes a blast stress wave attenuation equation and a peripheral hole distance calculation method under the combined action of in situ stress and joints. First, the static and dynamic parameters of the jointed slate are obtained by drilling core samples in the field and conducting indoor tests. Next, considering the geometric and physical attenuation of the blast stress wave, the attenuation formula of the blast stress wave under the combined action of in situ stress and joints is derived. Based on the theory of the combined action of stress waves and explosive gas, a formula for calculating the peripheral hole distance that integrates the effects of in situ stress, joints, and tensile strength of the rock body is proposed. Finally, LS-PREPOST software is used to analyze the damage to the surrounding rock, verified by an on-site blasting test. The results show that the blast stress wave attenuation formula proposed in this paper can accurately predict the stress wave peak value under the combined action of in situ stress and joints. Combining the geological conditions and blasting parameters of the Bayueshan Tunnel study section, the optimal peripheral hole spacing is calculated to be 45 cm. The average over-excavation value of the grade IV surrounding rock is controlled within 22 cm and the over-consumption of concrete per linear meter is controlled within 100% using the peripheral hole layout method and the hole network layout parameters proposed in this paper. The research results provide a reference for the control of over-excavation and under-excavation in large-section tunnel blasting.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3