Self-formed compositional superlattices triggered by cation orderings in m-plane Al1−xInxN on GaN

Author:

Chichibu Shigefusa F.,Shima Kohei,Kojima Kazunobu,Kangawa Yoshihiro

Abstract

Abstract Immiscible semiconductors are of premier importance since the source of lighting has been replaced by white light-emitting-diodes (LEDs) composed of thermodynamically immiscible InxGa1−xN blue LEDs and yellow phosphors. For realizing versatile deep-ultraviolet to near-infrared light-emitters, Al1−xInxN alloys are one of the desirable candidates. Here we exemplify the appearance and self-formation sequence of compositional superlattices in compressively strained m-plane Al1−xInxN films. On each terrace of atomically-flat m-plane GaN, In- and Al-species diffuse toward a monolayer (ML) step edge, and the first and second uppermost < $$\stackrel{-}{1}\stackrel{-}{1}20$$ 1 - 1 - 20 > cation-rows are preferentially occupied by Al and In atoms, respectively, because the configuration of one In-N and two Al-N bonds is more stable than that of one Al-N and two In-N bonds. Subsequent coverage by next < $$\stackrel{-}{1}\stackrel{-}{1}20$$ 1 - 1 - 20 > Al-row buries the < $$\stackrel{-}{1}\stackrel{-}{1}20$$ 1 - 1 - 20 > In-row, producing nearly Al0.5In0.5N cation-stripe ordering along [0001]-axis on GaN. At the second Al0.72In0.28N layer, this ordinality suddenly lessens but In-rich and In-poor < $$\stackrel{-}{1}\stackrel{-}{1}20$$ 1 - 1 - 20 >-rows are alternately formed, which grow into respective {0001}-planes. Simultaneously, approximately 5-nm-period Al0.70In0.30N/Al0.74In0.26N ordering is formed to mitigate the lattice mismatch along [0001], which grow into approximately 5-nm-period Al0.70In0.30N/Al0.74In0.26N {$$10\stackrel{-}{1}2$$ 10 1 - 2 } superlattices as step-flow growth progresses. Spatially resolved cathodoluminescence spectra identify the emissions from particular structures.

Funder

Cooperative Research Program of “Network Joint Research Center for Materials and Devices” and “Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials”

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3