Abstract
AbstractIn this research study, we systematically investigate the electronic and optical properties of van der Waals heterostructures (HSs) consisting of InTe (GaTe) and hBN monolayers, subjected to controlled biaxial strain. Our analysis demonstrates that the application of strain induces noteworthy alterations in the electronic band structure, enabling precise manipulation of the band gap and augmentation of the absorption properties of these structures. Employing density functional theory, we conduct a comprehensive examination of the influence of strain on the electronic and optical characteristics of these HSs. Our investigation showcases the remarkable potential of strain engineering in rendering these heterostructures into efficient and robust wide-range absorbers, particularly optimised for the visible spectrum, underscoring their relevance in various photonic and optoelectronic applications, paving the way for integration into advanced nanodevices.
Funder
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Austrian Science Fund
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献