Simultaneous synthesis of graphite-like and amorphous carbon materials via solution plasma and their evaluation as additive materials for cathode in Li–O2 battery

Author:

Chokradjaroen Chayanaphat,Watanabe Hiroko,Ishii Takahiro,Ishizaki Takahiro

Abstract

AbstractCathode materials are essential for enhancing electrocatalytic activity in energy-conversion devices. Carbon is one of the most suitable cathodic materials for Li–O2 batteries owing to its chemical and thermal stability. Carbon materials synthesized from tributyl borate (TBB) using a nonthermal solution plasma method were characterized using x‐ray diffraction, Raman, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy, and x-ray photoelectron spectroscopy and were evaluated as additive materials for cathodes in a Li–O2 battery. Two separate carbon materials were formed at the same time, a carbon dispersed in solution and a carbon precipitate at the bottom of the reactor, which had amorphous and graphite-like structures, respectively. The amorphous carbon contained boron and tungsten carbide, and the graphite-like carbon had more defects and electronic conductivity. The crystallinity and density of defects in the graphite-like carbon could be tuned by changing the SP operating frequency. The Li–O2 battery with the amorphous carbon containing boron and tungsten carbide was found to have a high capacity, while the one with the graphite-like carbon showed an affinity for the formation of Li2O2, which is the desired discharge product, and exhibited high cycling performance.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3