Effect of solar proton events on test mass for gravitational wave detection in the 24th solar cycle

Author:

Han Ruilong,Cai Minghui,Yang Tao,Xu Liangliang,Xia Qing,Jia Xinyu,Gao Dawei,Han Jianwei

Abstract

AbstractFree-falling cubic Test Masses (TMs) are a key component of the interferometer used for low-frequency gravitational wave (GW) detection in space. However, exposure to energetic particles in the environment can lead to electrostatic charging of the TM, resulting in additional electrostatic and Lorentz forces that can impact GW detection sensitivity. To evaluate this effect, the high-energy proton data set of the Geostationary Operational Environmental Satellite (GOES) program was used to analyze TM charging due to Solar Proton Events (SPEs) in the 24th solar cycle. Using the Geant4 Monte Carlo toolkit, the TM charging process is simulated in a space environment for SPEs falling into three ranges of proton flux: (1) greater than 10 pfu and less than 100 pfu, (2) greater than 100 pfu and less than 1000 pfu, and (3) greater than 1000 pfu. It is found that SPEs charging can reach the threshold within 535 s to 18.6 h, considering a reasonable discharge threshold of LISA and Taiji. We demonstrate that while there is a somewhat linear correlation between the net charging rate of the TM and the integrated flux of $$\ge$$  10 MeV SPEs, there are many cases in which the integrated flux is significantly different from the charging rate. Therefore, we investigate the difference between the integral flux and the charging rate of SPEs using the charging efficiency assessment method. Our results indicate that the energy spectrum structure of SPEs is the most important factor influencing the charging rate. Lastly, we evaluate the charging probability of SPEs in the 24th solar cycle and find that the frequency and charging risk of SPEs are highest in the 3rd, 4th, 5th, 6th, and 7th years, which can serve as a reference for future GW detection spacecraft.

Funder

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference51 articles.

1. Weber, J. Detection and generation of gravitational waves. Phys. Rev. 117, 306–313. https://doi.org/10.1103/PhysRev.117.306 (1960).

2. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102. https://doi.org/10.1103/PhysRevLett.116.061102 (2016).

3. Abbott, B. et al. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 9, 031040 (2019).

4. Abbott, R. et al. GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys. Rev. X 11, 021053 (2021).

5. Abbott, R. et al. GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. arXiv preprint arXiv:2111.03606 (2021).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3