Exogenous 24-epibrassinolide ameliorates tolerance to high-temperature by adjusting the biosynthesis of pigments, enzymatic, non-enzymatic antioxidants, and diosgenin content in fenugreek

Author:

Sheikhi Shahla,Ebrahimi Amin,Heidari Parviz,Amerian Mohamad Reza,Rashidi-Monfared Sajad,Alipour Hadi

Abstract

AbstractHigh-temperature stress is widely considered a main plant-growth-limiting factor. The positive effects of 24-epibrassinolide (EBR) as analogs of brassinosteroids (BRs) in modulating abiotic stresses have led this hormone to be referred to as a growth regulator in plants. The current study highlights the influence of EBR on enhancing tolerance to high-temperature and altering the diosgenin content in fenugreek. Different amounts of EBR (4, 8, and 16 μM), harvesting times (6, and 24 h), as well as temperature regimes (23 °C, and 42 °C) were, used as treatments. EBR application under normal temperature and high-temperature stress resulted in decreased malondialdehyde content and electrolyte leakage percentage, while the activity of antioxidant enzymes improved significantly. Exogenous EBR application possibly contributes to activating the nitric oxide, H2O2, and ABA-dependent pathways, enhancing the biosynthesis of abscisic acid and auxin, and regulating the signal transduction pathways, which raises fenugreek tolerance to high-temperature. The SQS (eightfold), SEP (2.8-fold), CAS (11-fold), SMT (17-fold), and SQS (sixfold) expression, considerably increased following EBR application (8 μM) compared to the control. Compared to the control, when the short-term (6 h) high-temperature stress was accompanied by EBR (8 μM), a sixfold increase in diosgenin content was achieved. Our findings highlight the potential role of exogenous 24-epibrassinolide in mitigating the high-temperature stress in fenugreek by stimulating the biosynthesis processes of enzymatic and non-enzymatic antioxidants, chlorophylls, and diosgenin. In conclusion, the current results could be of utmost importance in breeding or biotechnology-based programs of fenugreek and also in the researches related to the engineering of the biosynthesis pathway of diosgenin in this valuable plant.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference78 articles.

1. Chaudhary, S. et al. Elicitation of diosgenin production in Trigonella foenum-graecum (fenugreek) seedlings by methyl jasmonate. Int. J. Mol. Sci. 16(12), 29889–29899 (2015).

2. Ahmad, A., Alghamdi, S. S., Mahmood, K. & Afzal, M. Fenugreek a multipurpose crop: Potentialities and improvements. Saudi J. Biol. Sci. 23(2), 300–310 (2016).

3. Acharya, S., Srichamroen, A., Basu, S., Ooraikul, B. & Basu, T. Improvement in the nutraceutical properties of fenugreek (Trigonella foenum-graecum L.). Songklanakarin J. Sci. Technol. 28(1), 1–9 (2006).

4. Sadeghzadeh-Ahari, D., Hass, M., Kashi, A., Amri, A. & Alizadeh, K. Genetic variability of some agronomic traits in the Iranian fenugreek landraces under drought stress and non-stress conditions. Afr. J. Plant Sci. 4(2), 12–20 (2010).

5. Meena, S., Sastry, E., Rajput, S. & Pandey, Y. Stability of fenugreek (Trigonella foenum-graecum L.) genotypes for terminal heat and water stress. Legume Res. Int. J. 38(5), 589–597 (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3