Facing climate change: plant stress mitigation strategies in agriculture

Author:

Terán Fátima1,Vives‐Peris Vicente1,Gómez‐Cadenas Aurelio1ORCID,Pérez‐Clemente Rosa M.1ORCID

Affiliation:

1. Ecophysiology and Biotechnology, Department of Biology Biochemistry and Natural Sciences, Universitat Jaume I Castellón de la Plana Spain

Abstract

AbstractClimate change poses significant challenges to global agriculture, with rising temperatures, altered precipitation patterns, and increased frequency of extreme weather events threatening crop yields. These changes exceed the adaptability thresholds of many crops, decreasing their yield and threatening food security. At plant physiological levels, climate change‐induced stressors disrupt photosynthesis, growth, and reproductive processes, contributing to a reduced productivity. Furthermore, the negative impacts of climate change on agriculture are exacerbated by anthropogenic factors, with agriculture itself contributing significantly to greenhouse gas emissions. To mitigate these challenges, various approaches have been explored. This work reviews the most important physical, chemical, and biological strategies most commonly used in a broad range of agricultural crops. Among physical strategies, increasing water use efficiency without yield reduction through different irrigation strategies, and the use of foliar treatments with reflective properties to mitigate the negative effects of different stresses have been proven to be effective. Concerning chemical approaches, the exogenous treatment of plants with chemicals induces existing molecular and physiological plant defense mechanisms, enhancing abiotic stress tolerance. Regarding biological treatments, plant inoculation with mycorrhiza and plant growth‐promoting rhizobacteria (PGPR) can improve enzymatic antioxidant capacity and mineral solubilization, favoring root and plant growth and enhance plant performance under stressful conditions. While these strategies provide valuable short‐ to medium‐term solutions, there is a pressing need for new biotechnological approaches aimed at developing genotypes resistant to stressful conditions. Collaborative efforts among researchers, policymakers, and agricultural stakeholders are essential to ensure global food security in the face of ongoing climate challenges.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3