Effect of the surface coverage of an alkyl carboxylic acid monolayer on waterborne and cellular uptake behaviors for silicon quantum dots

Author:

Shirahata Naoto

Abstract

AbstractThis article reports the development of highly waterborne silicon quantum dots (Si QDs) terminated with a reactive group for grafting of biomolecules. Hydrogen-terminated QDs were prepared by thermal disproportionation of amorphous hydrogen silsesquioxane derived from triethoxysilane followed by hydrofluoric etching. Next, the hydrogenated Si surfaces were exposed to 10-undecenoic acid at different temperatures in Ar atmosphere, yielding the termination of the QDs with a carboxyl group. The thermal hydrosilylation of 10-undecenoic acid yielded the termination of the QDs with a carboxyl group. An increase in molecular coverage of an undecanoic acid (UA) monolayer resulted in both the enhanced increase of zeta-potential in a negative direction for a greater water-dispersity and the increase of absolute quantum yield (QY) of photoluminescence (PL). PLQY improved for ~ 1% to 26% with increasing UA coverage. We assessed the molecular interaction between the UA-SiQDs and HeLa cells by means of cellular uptake experiments using the QDs with different UA coverages. Results showed that the QDs with the highest dispersity in water were not internalized in the cells under confocal fluorescence microscopic observation. In contrast, the QDs with lower coverage of UA monolayer were internalized by endocytosis when incubated with HeLa cells. This contrasting observation opens the possibility of successfully preparing carboxy-capped SiQDs that do not allow cellular uptake but are targeted to specific cells by appropriate conjugation with biomolecules.

Funder

Murata Science Foundation

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3