Postproduction Approach to Enhance the External Quantum Efficiency for Red Light-Emitting Diodes Based on Silicon Nanocrystals

Author:

Yamada HiroyukiORCID,Watanabe JunpeiORCID,Nemoto Kazuhiro,Sun Hong-TaoORCID,Shirahata NaotoORCID

Abstract

Despite bulk crystals of silicon (Si) being indirect bandgap semiconductors, their quantum dots (QDs) exhibit the superior photoluminescence (PL) properties including high quantum yield (PLQY > 50%) and spectral tunability in a broad wavelength range. Nevertheless, their low optical absorbance character inhibits the bright emission from the SiQDs for phosphor-type light emitting diodes (LEDs). In contrast, a strong electroluminescence is potentially given by serving SiQDs as an emissive layer of current-driven LEDs with (Si-QLEDs) because the charged carriers are supplied from electrodes unlike absorption of light. Herein, we report that the external quantum efficiency (EQE) of Si-QLED was enhanced up to 12.2% by postproduction effect which induced by continuously applied voltage at 5 V for 9 h. The active layer consisted of SiQDs with a diameter of 2.0 nm. Observation of the cross-section of the multilayer QLEDs device revealed that the interparticle distance between adjacent SiQDs in the emissive layer is reduced to 0.95 nm from 1.54 nm by “post-electric-annealing”. The shortened distance was effective in promoting charge injection into the emission layer, leading improvement of the EQE.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3