Long Time Atmospheric Oxidation Followed by Hydrofluoric Etching and Hydrosilylation for High‐Efficiency Light‐Emitting Silicon Quantum Dots

Author:

He Qiang1,Wang Kun1,Li Dongke12ORCID,Yang Deren12,Pi Xiaodong12

Affiliation:

1. State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China

2. Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices ZJU‐Hangzhou Global Scientific and Technological Innovation Centre Zhejiang University Hangzhou Zhejiang 311215 China

Abstract

AbstractTunable emission wavelength and excellent biocompatibility have positioned silicon quantum dots (Si QDs) as important optoelectronic materials in areas like displays, lighting, and biomedical imaging. However, the challenges of low luminescence efficiency impede the utilization of Si QDs, restraining the advancement of Si QDs‐based light‐emitting diode (LED) devices. This study primarily concentrates on optimizing the surface structure of Si QDs and refining the Si QDs‐based LED device structures. A strategy involving active oxidation followed by hydrofluoric etching and hydrosilylation is proposed to enhance the optical characteristics of Si QDs. A variety of characterization methods are employed to evaluate the impact of the active oxidation on the photoluminescence and surface structures of Si QDs. This approach ultimately achieves an impressive enhancement in the photoluminescence quantum yield (PL QY) of Si QDs from 6.7% to 60.3%. Furthermore, the atmospherically oxidized Si QDs with the highest PL QY are selected as the emitting‐layer material to fabricate LEDs with the structure of ITO/PEDOT:PSS/TFB/Si QDs/ZnMgO/Ag. The introduction of ZnMgO effectively balances charge injection in the Si‐QDs‐based LEDs. As a result, the devices achieve electroluminescence with an external quantum efficiency of 13.2%.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3