Research on drinking-groundwater source safety management based on numerical simulation

Author:

Song Kai,Ren Xu,Mohamed Adam Khalifa,Liu Jian,Wang Fei

Abstract

AbstractA drinking-groundwater source protection technology system based on a three-dimensional finite-difference groundwater model was constructed and applied to the safe management of drinking groundwater in the first terrace of Fujiang River. In the study area, the main type of groundwater is the quaternary systemic alluvial deposit loose rock pore water and the aquifer thickness varies between 20 and 35 m. Groundwater is the main source of water and is used for various purposes through two exploitation wells. The water volumes of 1# exploitation well (1#) and 2# exploitation well (2#) are 10,000 m3/day and 5000 m3/day, respectively. An analysis of 22 indicators from 11 groundwater samples showed that a higher concentration of chemical-oxygen-demand (CODMn) and ammonia–nitrogen (NH3–N), and they had a high correlation with most of the other water-quality factors. Therefore, CODMn and NH3–N were selected as indicator factors for model calibration and prediction. Twenty-two hydraulic head observation wells were used for flow-model calibration. The flow model indicated that a drop funnel formed with a maximum depth of 12 m, and the particle-capture zone in the original downstream direction of the south side extended to 1100 m because of groundwater exploitation. The solute-transport model showed that industrial pollution sources were the main factors that led to a deterioration of water quality. To analyze the necessity and effectiveness of remediation measures for the safety of drinking-water sources, two scenarios were considered to predict the concentration of NH3-N and CODMn in groundwater exploitation wells over 20 years. Scenario I, which considered that current conditions were maintained, predicted that the NH3-N would exceed the drinking-water quality standard of 0.5 mg/L after 16 years. Scenario II, in which industrial sewage treatment plants were installed outside the particle-trapped zone of the exploitation wells and strict anti-seepage measures were implemented, predicted that the peak concentrations of NH3-N and CODMn in the exploitation wells would be 0.26 mg/L and 1.33 mg/L, respectively, after 3 years of model operation. This study provides a theoretical basis for drinking-groundwater source protection that can be applied to safety management practices.

Funder

Southwest jiaotong university

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3