Mining Leachates Effect on the Hydraulic Performance of Geosynthetic Clay Liners under Different Temperatures

Author:

Liu Yang12,Li Xinxin1,Tu Yuanzhuo1,Lu Yulong12

Affiliation:

1. School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

2. Hunan Geological Disaster Monitoring, Early Warning and Emergency Rescue Engineering Technology Research Center, Changsha 410004, China

Abstract

Geosynthetic clay liners (GCLs) are often used as anti-seepage systems in landfills and at the bottom of tailing ponds. The anti-seepage performance of GCL will change under different temperatures. In this study, bentonite was mixed with test solutions at different temperatures to measure the basic performance indexes of bentonite components and analyze the permeability. The composition and micro-structure of bentonite at different temperatures were analyzed by X-ray diffraction, X-ray fluorescence spectrum, and SEM, and the change rule of permeability property with the mine leachates at different temperatures was understood by combining the macro-measured parameters with the microscopic analysis results. The research results indicate that the fluid loss of two bentonites increased with the increasing temperature due to the inhibition of ion exchange between bentonite and mixture by the increased temperature. The swelling index of the bentonite increased at high temperatures. The micro-structure analysis showed the increase of the pore size attributed to high temperature, and the uneven distribution of the pore size resulted in the increase of the intrinsic permeability. The study would provide the reference for the application of GCL in mining.

Funder

Natural Science Foundation of Hunan Province

Research Project of Teaching Reform of Hunan Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3