Sepiolite-Based Adsorbents for the Removal of Potentially Toxic Elements from Water: A Strategic Review for the Case of Environmental Contamination in Hunan, China

Author:

Wang Zhenghua,Liao Lina,Hursthouse AndrewORCID,Song Na,Ren Bozhi

Abstract

The last few decades have seen rapid industrialization and urban development in many regions globally; with associated pollution by potentially toxic elements; which have become a threat to human health and the food chain. This is particularly prevalent in a number of regions in China that host multiple mineral resources and are important agricultural locations. Solutions to protect contamination of the food chain are more effective and sustainable if locally sourced materials are available; and in this context; we review the potential of local (sepiolite) mineral deposits to treat water contamination in the Hunan Municipality; central south China; widely recognized for significant environmental pollution issues (particularly by Hg; Cd; Pb; and Cr) and the high agricultural productivity of the region. Sepiolite is an abundant fibrous clay mineral with modest to good adsorption properties and extensive industrial process applications. It shows reasonable performance as an adsorbent for element removal. In addition; a number of surface modification strategies are available that improve this capability. We review these studies; focused on sorption reaction mechanisms and regeneration potential; with a view to present options for a localized and effective economic strategy for future application.

Funder

Hunan Provincial Science and Technology Department

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference89 articles.

1. Research on heavy metal pollution of river Ganga: A review

2. Assessment of heavy metal pollution in Red River surface sediments, Vietnam

3. Status and control technology of heavy metal pollution;Sun;Energy Energy Conserv.,2012

4. Research situation and outlook on heavy metal pollution in water environment of China;Wang;Guangdong Trace Elements Sci.,2010

5. Current status of heavy metal pollution in seven major water systems in China;Yue;Prev. Med. Trib.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3