Direct numerical simulation of an unsteady wall-bounded turbulent flow configuration for the assessment of large-eddy simulation models

Author:

Engelmann Linus,Hasslberger Josef,Baik Seung-Jin,Klein Markus,Kempf Andreas

Abstract

AbstractA new benchmark case for the evaluation of direct numerical simulation (DNS) and large-eddy simulation (LES) models and methods is presented in this study. The known Taylor–Green vortex is modified by replacing the periodic boundary conditions in one direction with a no-slip boundary. A passive scalar is added and transported from the wall into the fluid. The addition of walls allows for the study of transient-instationary flows in a simple geometry with clean boundary and initial conditions, which is a key requirement for the assessment of LES modeling strategies. The added scalar mimics heat transfer through the wall. The case features reasonable computational cost for highly-resolved LES and DNS calculations. Simulations of the wall-bounded Taylor–Green vortex are easy to setup and do not require additional modeling. The proposed modification of the case is compared to the default Taylor–Green vortex and the difference in flow-physics is discussed. A detailed convergence study with four meshes, each of them refined by a factor of 2, has been conducted. The results reveal that converged second-order statistics can be obtained up to a dimensionless time of $$t/t_0 = 20$$ t / t 0 = 20 . Beyond that, due to the unsteady chaotic nature of the flow, some uncertainties remain. The results show that the case features challenging (near-wall) flow dynamics, which cannot be covered using the default Taylor–Green vortex and hence, justify the proposed case as a useful benchmark.

Funder

Deutsche Forschungsgemeinschaft

Universität Duisburg-Essen

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3