Steady streaming in a turbulent oscillating boundary layer

Author:

SCANDURA PIETRO

Abstract

The turbulent flow generated by an oscillating pressure gradient close to an infinite plate is studied by means of numerical simulations of the Navier–Stokes equations to analyse the characteristics of the steady streaming generated within the boundary layer. When the pressure gradient that drives the flow is given by a single harmonic component, the time average over a cycle of the flow rate in the boundary layer takes both positive and negative values and the steady streaming computed by averaging the flow over n cycles tends to zero as n tends to infinity. On the other hand, when the pressure gradient is given by the sum of two harmonic components, with angular frequencies ω1 and ω2 = 2ω1, the time average over a cycle of the flow rate does not change sign. In this case steady streaming is generated within the boundary layer and it persists in the irrotational region. It is shown both theoretically and numerically that in spite of the presence of steady streaming, the time average over n cycles of the hydrodynamic force, acting per unit area of the plate, vanishes as n tends to infinity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3