Significance of heat transfer rate in water-based nanoparticles with magnetic and shape factors effects: Tiwari and Das model

Author:

Asif Ali Shah Syed,Kanwal Shumaila,Idrees Muhammad,Mahmood Asif,Mahmood Irfan,Akgul Ali,Bariq Abdul

Abstract

AbstractNanofluids are implementable in a variety of applications, such as heat exchangers, the healthcare sector, the cooling of various devices, hybrid-powered machines, microelectronics, power plants, chemical processes, astronomical technology, cancer treatment, etc. Nanofluids also have enhanced heat transmission and thermal efficiency. The heat radiation of nanoparticles and the natural-convective flow of electrically conducting nanofluids over the rotating disk using Darcy Forchheimer’s porous media, thermal radiation is investigated in this paper. The nanoparticles titanium dioxide and single-walled carbon nanotubes are taken into account with base fluid water. The main goal of this investigation is to enhance heat transfer in nanofluids. The mathematical solution for the model has been obtained through the utilization of cylindrical coordinates. The flow model, which forms the basis of the investigation, is constructed around partial differential equations (PDEs). To address the inherent nonlinearity of these PDEs, physical similarities are employed to transform them into ordinary differential equations (ODEs). Subsequently, the fourth-order Runge–Kutta technique is employed via Matlab to solve these ODEs. The graphical examination of the velocities and temperature with various parameters is an exquisite display of scientific artistry. The magnetic field component is anticipated to exhibit an inverse correlation with velocities, while the temperature profile is expected to surge with the rise of the nonlinear mixed convection parameter. Additionally, the skin friction and Nusselt number are meticulously computed and presented in a tabular format, adding a touch of elegance to the already breathtaking analysis. By boosting the radiation parameter, the Nusselt value declined. Moreover, it is observed that the nanofluids having a laminar nanoparticle shape have a greater heat transfer rate.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3