A numerical study of chemical reaction in a nanofluid flow due to rotating disk in the presence of magnetic field

Author:

Ramzan Muhammad,Khan Noor Saeed,Kumam Poom,Khan Raees

Abstract

AbstractIn this paper, a numerical study of MHD steady flow due to a rotating disk with mixed convection, Darcy Forchheimer’s porous media, thermal radiation, and heat generation/absorption effects are explored. A strong magnetic field is applied in perpendicular direction to the flow which governs the Hall current effects. Homogeneous and heterogeneous reactions are also taken into account. For the simplification of partial differential equations (PDEs) into the nonlinear ordinary differential equations (ODEs), the method of generalized Von Karman similarity transformations is employed, and the resulting non-dimensional ordinary differential equations are solved by using the homotopy analysis method (HAM). Effects of different parameters on the axial, radial and tangential velocity profiles, temperature and concentration of chemical reaction profiles are analyzed and discussed. The present work’s remarkable finding is that with the expansion of nanoparticles size, dimensionless constant parameter, local Grashof number, porosity parameter, Hall current, and suction parameter, the nanofluid radial velocity is enhanced. For the higher values of magnetic field parameter, the tangential velocity and nanofluid temperature are enhanced. The magnetic field parameter and the disk thickness coefficient parameter have similar impacts on the axial velocity profile. Heterogeneous chemical reaction parameter decreases the concentration of chemical reaction profile. The nanoparticles volume fraction increases the concentration of chemical reaction profile. Furthermore, the present results are found to be in excellent agreement with previously published work in tabulated form.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Keller box numerical analysis of power-law rotating disk for nanofluid flow with chemical reaction;Numerical Heat Transfer, Part A: Applications;2024-04-13

2. Modeling of thermal and solute transport within a Maxwell fluid in contact with a porous rotating disc;The European Physical Journal Special Topics;2024-03-26

3. HALL CURRENTS AND ION SLIP EFFECT ON SISKO NANOFLUID FLOW FEATURING CHEMICAL REACTION OVER POROUS MEDIUM-A STATISTICAL APPROACH;Special Topics & Reviews in Porous Media: An International Journal;2024

4. Numerical calculation of unsteady MHD nanofluid flow across two fluctuating discs with chemical reaction and zero mass flux;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2023-11-22

5. A theoretical investigation on heat transport feature of Sutterby nanofluid flow above a conical surface;International Journal of Modelling and Simulation;2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3