QSPR models for predicting the adsorption capacity for microplastics of polyethylene, polypropylene and polystyrene

Author:

Li Miao,Yu Haiying,Wang Yifei,Li Jiagen,Ma Guangcai,Wei Xiaoxuan

Abstract

AbstractMicroplastics have become an emerging concerned global environmental pollution problem. Their strong adsorption towards the coexisting organic pollutants can cause additional environmental risks. Therefore, the adsorption capacity and mechanisms are necessary information for the comprehensive environmental assessments of both microplastics and organic pollutants. To overcome the lack of adsorption information, five quantitative structure–property relationship (QSPR) models were developed for predicting the microplastic/water partition coefficients (log Kd) of organics between polyethylene/seawater, polyethylene/freshwater, polyethylene/pure water, polypropylene/seawater, and polystyrene/seawater. All the QSPR models show good fitting ability (R2 = 0.811–0.939), predictive ability (Q2ext = 0.835–0.910, RMSEext = 0.369–0.752), and robustness (Qcv2 = 0.882–0.957). They can be used to predict the Kd values of organic pollutants (such as polychlorinated biphenyls, chlorobenzene, polycyclic aromatic hydrocarbons, antibiotics perfluorinated compounds, etc.) under different pH conditions. The hydrophobic interaction has been indicated as an important mechanism for the adsorption of organic pollutants to microplastics. In sea waters, the role of hydrogen bond interaction in adsorption is considerable. For polystyrene, π–π interaction contributes to the partitioning. The developed models can be used to quickly estimate the adsorption capacity of organic pollutants on microplastics in different types of water, providing necessary information for ecological risk studies of microplastics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3