Porous defective carbon ferrite for adsorption and photocatalysis toward nitrogen compounds in pre-treated biogas slurry

Author:

Li Jie

Abstract

AbstractCarbon ferrite (C-Fe3O4) with hydrophilic functional groups and lattice defects was synthesized in anhydrous molten alkali system by fern leaves and ferric chloride as raw materials. Structural characterization results showed that carbon ferrite obtained oxygen-containing groups on the carbon surface. And structural pores and lattice defects resulted from spontaneous accumulation and “directive-connection” of ferrite (Fe3O4) nanoparticles. Carbon ferrite displayed an adsorption efficiency of 29.0% and excellent photocatalytic degradation of 80.8% toward nitrogen compounds (initial concentration of 430 mg/L) in pre-treated biogas slurry. The micromechanism for nitrogen compounds removal was discussed at the molecular/atomic level by exploring carbon ferrite “structure-activity”, which provides a design idea from microscopic perspective for the preparation of environmental materials with reactive sites.

Funder

Regulation of active sites of carbon ferrite and mechanism of adsorption and photocatalysis toward nitrogen compounds in biogas slurry

The Creation of Porous and Defective Carbon Ferrite for Catalytic Degradation of Organic Matter in Aquaculture Wastewater

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3