Material jetting of carbon nano onions for printed electronics

Author:

Pinto Rui M RORCID,Nemala Siva SankarORCID,Faraji MohammadmahdiORCID,Fernandes Joao,Ponte Clara,De Bellis GiovanniORCID,Retolaza AritzORCID,Vinayakumar K BORCID,Capasso AndreaORCID

Abstract

Abstract As an additive manufacturing process, material jetting techniques allow to selectively deposit droplets of materials in liquid or powder form through a small-diameter aperture, such as a nozzle of a print head. For the fabrication of printed electronics, a variety of inks and dispersions of functional materials can be deposited by drop-on-demand printing on rigid and flexible substrates. In this work, zero-dimensional multi-layer shell-structured fullerene material, also known as carbon nano-onion (CNO) or onion-like carbon, is printed on polyethylene terephthalate substrates using drop-on-demand inkjet printing. CNOs are produced using a low-cost flame synthesis technique and characterized by electron microscopy, Raman, x-ray photoelectron spectroscopy, and specific surface area and pore size measurements. The produced CNO material has an average diameter of ∼33 nm, pore diameter in the range ∼2–40 nm and a specific surface area of 160 m2.g−1. The CNO dispersions in ethanol have a reduced viscosity (∼1.2 mPa.s) and are compatible with commercial piezoelectric inkjet heads. The jetting parameters are optimized to avoid satellite drops and to obtain a reduced drop volume (52 pL), resulting in optimal resolution (220 μm) and line continuity. A multi-step process is implemented without inter-layer curing and a fine control over the CNO layer thickness is achieved (∼180 nm thick layer after 10 printing passes). The printed CNO structures show an electrical resistivity of ∼600 Ω.m, a high negative temperature coefficient of resistance (−4.35 × 10−2 °C−1) and a marked dependency on relative humidity (−1.29 × 10−2 RH% −1). The high sensitivity to temperature and humidity, combined to the large specific area of the CNOs, make this material and the corresponding ink a viable prospect for inkjet-printed technologies, such as environmental and gas sensors.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3