Subglottal pressure oscillations in anechoic and resonant conditions and their influence on excised larynx phonations

Author:

Lehoux Hugo,Hampala Vít,Švec Jan G.

Abstract

AbstractExcised larynges serve as natural models for studying behavior of the voice source. Acoustic resonances inside the air-supplying tubes below the larynx (i.e., subglottal space), however, interact with the vibratory behavior of the larynges and obscure their inherent vibration properties. Here, we explore a newly designed anechoic subglottal space which allows removing its acoustic resonances. We performed excised larynx experiments using both anechoic and resonant subglottal spaces in order to analyze and compare, for the very first time, the corresponding subglottal pressures, electroglottographic and radiated acoustic waveforms. In contrast to the resonant conditions, the anechoic subglottal pressure waveforms showed negligible oscillations during the vocal fold contact phase, as expected. When inverted, these waveforms closely matched the inverse filtered radiated sound waveforms. Subglottal resonances modified also the radiated sound pressures (Level 1 interactions). Furthermore, they changed the fundamental frequency (fo) of the vocal fold oscillations and offset phonation threshold pressures (Level 2 interactions), even for subglottal resonance frequencies 4–10 times higher than fo. The obtained data offer the basis for better understanding the inherent vibratory properties of the vocal folds, for studying the impact of structure-acoustic interactions on voice, and for validation of computational models of voice production.

Funder

Grantová Agentura České Republiky

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3