Comments on the Myoelastic - Aerodynamic Theory of Phonation

Author:

Titze Ingo R.1

Affiliation:

1. Gallaudet College, Washington, D.C.

Abstract

The myoelastic-aerodynamic theory of phonation has been quantified and tested with mathematical models. The models suggest that vocal fold oscillation is produced as a result of asymmetric forcing functions over closing and opening portions of the glottal cycle. For nearly uniform tissue displacements, as in falsetto voice, the asymmetry in the driving forces can result from the inertia of the air moving through the glottis. This inertia can in turn be enhanced or suppressed by supraglottal or subglottal vocal tract coupling. More obvious and pronounced asymmetries in the driving forces are associated with non-uniform vocal fold tissue displacements. These are combinations of normal tissue modes, and can result in vertical and horizontal phase differences along the surfaces, as observed in chest voice. The ranges of oscillation increase among various models as more freedom in the simulated tissue movement is incorporated. Of particular significance in initiating and maintaining oscillation are the vertical motions that facilitate coupling of aerodynamic energy into the tissues and allow tissue deformations under conditions of incompressibility. Vertical displacements also can have a significant effect on vocal tract excitation. Control of fundamental frequency of oscillation (FO) is basically myoelastic, partially as a result of deliberate or reflex adjustments of laryngeal muscles, and partially as a result of nonlinear tissue strain over the vibrational cycle. This places limits on the control of FO by subglottal pressure, and forces such control to be inseparably connected with vibrational amplitude, or less directly, with vocal intensity.

Publisher

American Speech Language Hearing Association

Subject

Speech and Hearing,Linguistics and Language,Language and Linguistics

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3