A quantum-inspired probabilistic prime factorization based on virtually connected Boltzmann machine and probabilistic annealing

Author:

Jung Hyundo,Kim Hyunjin,Lee Woojin,Jeon Jinwoo,Choi Yohan,Park Taehyeong,Kim Chulwoo

Abstract

AbstractProbabilistic computing has been introduced to operate functional networks using a probabilistic bit (p-bit), broadening the computational abilities in non-deterministic polynomial searching operations. However, previous developments have focused on emulating the operation of quantum computers similarly, implementing every p-bit with large weight-sum matrix multiplication blocks and requiring tens of times more p-bits than semiprime bits. In addition, operations based on a conventional simulated annealing scheme required a large number of sampling operations, which deteriorated the performance of the Ising machines. Here we introduce a prime factorization machine with a virtually connected Boltzmann machine and probabilistic annealing method, which are designed to reduce the hardware complexity and number of sampling operations. From 10-bit to 64-bit prime factorizations were performed, and the machine offers up to 1.2 × 108 times improvement in the number of sampling operations compared with previous factorization machines, with a 22-fold smaller hardware resource.

Funder

Samsung Research Funding & Incubation Center of Samsung Electronics

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3