Abstract
AbstractThis study describes a segmentation-free deep learning (DL) algorithm for measuring retinal nerve fibre layer (RNFL) thickness on spectral-domain optical coherence tomography (SDOCT). The study included 25,285 B-scans from 1,338 eyes of 706 subjects. Training was done to predict RNFL thickness from raw unsegmented scans using conventional RNFL thickness measurements from good quality images as targets, forcing the DL algorithm to learn its own representation of RNFL. The algorithm was tested in three different sets: (1) images without segmentation errors or artefacts, (2) low-quality images with segmentation errors, and (3) images with other artefacts. In test set 1, segmentation-free RNFL predictions were highly correlated with conventional RNFL thickness (r = 0.983, P < 0.001). In test set 2, segmentation-free predictions had higher correlation with the best available estimate (tests with good quality taken in the same date) compared to those from the conventional algorithm (r = 0.972 vs. r = 0.829, respectively; P < 0.001). Segmentation-free predictions were also better in test set 3 (r = 0.940 vs. r = 0.640, P < 0.001). In conclusion, a novel segmentation-free algorithm to extract RNFL thickness performed similarly to the conventional method in good quality images and better in images with errors or other artefacts.
Funder
U.S. Department of Health & Human Services | NIH | National Eye Institute
Publisher
Springer Science and Business Media LLC
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献