Chemometric approach to evaluate the chemical behavior of rainwater at high altitude in Shaune Garang catchment, Western Himalaya

Author:

Kumar Ramesh,Kumar Rajesh,Singh Atar,Arif Mohammad,Kumar Pankaj,Kumari Anupma

Abstract

AbstractThe present research has been performed to analyze the chemical behavior of rainwater of the Shaune Garang catchment (32.19° N, 78.20° E) in the Baspa basin, located at a high elevation (4221 m above mean sea level) in the Himachal Himalaya, India. During the study period, sixteen rainwater samples were collected from the Shaune Garang catchment at five different sites. The volume-weighted mean (VWM) pH value of rainwater ranged between 4.59 and 6.73, with an average value of 5.47 ± 0.69, indicating the alkaline nature of rainfall. The total ionic strength in the rainwater ranged from 113.4 to 263.3 µeq/l with an average value of 169.1 ± 40.4 µeq/l. The major dominant cations were Ca2+ (43.10%) and Na+ (31.97%) and anions were Cl (37.68%), SO42− (28.71%) and NO3 (23.85%) in rainwater. The ionic ratios were calculated among all the ions. The fraction of (NO3  +Cl) with SO42− was measured as 2.3, which specifies sour faces of rainwater due to HNO3, H2SO4, and HCl. A multivariate statistical assessment of rainwater chemistry through Principal Component Analysis (PCA) shows the significance of four factors controlling 78.37% of the total variance, including four-component (PC1 explained 27.89%, PC2 explained 24.98%, PC3 explained 14.64%, PC4 explained 10.85%). However, the individual contribution of Factor 1(PC1) explains 27.89% of the total variance (78.37%) and displays a strong optimistic loading for Ca2+ and Cl. Further, high loading of Ca2+ and NO3 and moderate loading of SO42− signify the contribution of burning fossil fuel and soil dust. Anthropogenic and natural pollutants influence the composition of rainwater in the pristine Himalayas due to local and long-distance transportation. The study area receives precipitation from the West and North-West, transporting dust and fossil fuel emissions from the Thar Desert and Northwestern countries.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3