An improved V-Net lung nodule segmentation model based on pixel threshold separation and attention mechanism

Author:

Ma Xiaopu,Song Handing,Jia Xiao,Wang Zhan

Abstract

AbstractAccurate labeling of lung nodules in computed tomography (CT) images is crucial in early lung cancer diagnosis and before nodule resection surgery. However, the irregular shape of lung nodules in CT images and the complex lung environment make it much more challenging to segment lung nodules accurately. On this basis, we propose an improved V-Net segmentation method based on pixel threshold separation and attention mechanism for lung nodules. This method first offers a data augment strategy to solve the problem of insufficient samples in 3D medical datasets. In addition, we integrate the feature extraction module based on pixel threshold separation into the model to enhance the feature extraction ability under different thresholds on the one hand. On the other hand, the model introduces channel and spatial attention modules to make the model pay more attention to important semantic information and improve its generalization ability and accuracy. Experiments show that the Dice similarity coefficients of the improved model on the public datasets LUNA16 and LNDb are 94.9% and 81.1% respectively, and the sensitivities reach 92.7% and 76.9% respectively. which is superior to most existing UNet architecture models and comparable to the manual level segmentation results by medical technologists.

Funder

key scientific research projects of colleges and universities in Henan province of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3