Deep Learning Applications in Computed Tomography Images for Pulmonary Nodule Detection and Diagnosis: A Review

Author:

Li Rui,Xiao Chuda,Huang Yongzhi,Hassan Haseeb,Huang BingdingORCID

Abstract

Lung cancer has one of the highest mortality rates of all cancers and poses a severe threat to people’s health. Therefore, diagnosing lung nodules at an early stage is crucial to improving patient survival rates. Numerous computer-aided diagnosis (CAD) systems have been developed to detect and classify such nodules in their early stages. Currently, CAD systems for pulmonary nodules comprise data acquisition, pre-processing, lung segmentation, nodule detection, false-positive reduction, segmentation, and classification. A number of review articles have considered various components of such systems, but this review focuses on segmentation and classification parts. Specifically, categorizing segmentation parts based on lung nodule type and network architectures, i.e., general neural network and multiview convolution neural network (CNN) architecture. Moreover, this work organizes related literature for classification of parts based on nodule or non-nodule and benign or malignant. The essential CT lung datasets and evaluation metrics used in the detection and diagnosis of lung nodules have been systematically summarized as well. Thus, this review provides a baseline understanding of the topic for interested readers.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3