Phonon-based partition of (ZnSe-like) semiconductor mixed crystals on approach to their pressure-induced structural transition

Author:

Shoker M. B.,Pagès Olivier,Torres V. J. B.,Polian A.,Itié J.-P.,Pradhan G. K.,Narayana C.,Rao M. N.,Rao R.,Gardiennet C.,Kervern G.,Strzałkowski K.,Firszt F.

Abstract

AbstractThe generic 1-bond → 2-mode “percolation-type” Raman signal inherent to the short bond of common A1−xBxC semiconductor mixed crystals with zincblende (cubic) structure is exploited as a sensitive “mesoscope” to explore how various ZnSe-based systems engage their pressure-induced structural transition (to rock-salt) at the sub-macroscopic scale—with a focus on Zn1−xCdxSe. The Raman doublet, that distinguishes between the AC- and BC-like environments of the short bond, is reactive to pressure: either it closes (Zn1−xBexSe, ZnSe1−xSx) or it opens (Zn1−xCdxSe), depending on the hardening rates of the two environments under pressure. A partition of II–VI and III–V mixed crystals is accordingly outlined. Of special interest is the “closure” case, in which the system resonantly stabilizes ante transition at its “exceptional point” corresponding to a virtual decoupling, by overdamping, of the two oscillators forming the Raman doublet. At this limit, the chain-connected bonds of the short species (taken as the minor one) freeze along the chain into a rigid backbone. This reveals a capacity behind alloying to reduce the thermal conductivity as well as the thermalization rate of photo-generated electrons.

Funder

Indo-French Centre for the Promotion of Advanced Research

Fundação para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3