Lung nodule detection in chest X-rays using synthetic ground-truth data comparing CNN-based diagnosis to human performance

Author:

Schultheiss Manuel,Schmette Philipp,Bodden Jannis,Aichele Juliane,Müller-Leisse Christina,Gassert Felix G.,Gassert Florian T.,Gawlitza Joshua F.,Hofmann Felix C.,Sasse Daniel,von Schacky Claudio E.,Ziegelmayer Sebastian,De Marco Fabio,Renger Bernhard,Makowski Marcus R.,Pfeiffer Franz,Pfeiffer Daniela

Abstract

AbstractWe present a method to generate synthetic thorax radiographs with realistic nodules from CT scans, and a perfect ground truth knowledge. We evaluated the detection performance of nine radiologists and two convolutional neural networks in a reader study. Nodules were artificially inserted into the lung of a CT volume and synthetic radiographs were obtained by forward-projecting the volume. Hence, our framework allowed for a detailed evaluation of CAD systems’ and radiologists’ performance due to the availability of accurate ground-truth labels for nodules from synthetic data. Radiographs for network training (U-Net and RetinaNet) were generated from 855 CT scans of a public dataset. For the reader study, 201 radiographs were generated from 21 nodule-free CT scans with altering nodule positions, sizes and nodule counts of inserted nodules. Average true positive detections by nine radiologists were 248.8 nodules, 51.7 false positive predicted nodules and 121.2 false negative predicted nodules. The best performing CAD system achieved 268 true positives, 66 false positives and 102 false negatives. Corresponding weighted alternative free response operating characteristic figure-of-merits (wAFROC FOM) for the radiologists range from 0.54 to 0.87 compared to a value of 0.81 (CI 0.75–0.87) for the best performing CNN. The CNN did not perform significantly better against the combined average of the 9 readers (p = 0.49). Paramediastinal nodules accounted for most false positive and false negative detections by readers, which can be explained by the presence of more tissue in this area.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3