Concatenated Modified LeNet Approach for Classifying Pneumonia Images

Author:

Jaganathan Dhayanithi1,Balsubramaniam Sathiyabhama1,Sureshkumar Vidhushavarshini2ORCID,Dhanasekaran Seshathiri3ORCID

Affiliation:

1. Department of Computer Science and Engineering, Sona College of Technology, Salem 636005, India

2. Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Vadapalani Campus, Chennai 600026, India

3. Department of Computer Science, UiT The Arctic University of Norway, 9037 Tromsø, Norway

Abstract

Pneumonia remains a critical health concern worldwide, necessitating efficient diagnostic tools to enhance patient care. This research proposes a concatenated modified LeNet classifier to classify pneumonia images accurately. The model leverages deep learning techniques to improve the diagnosis of Pneumonia, leading to more effective and timely treatment. Our modified LeNet architecture incorporates a revised Rectified Linear Unit (ReLU) activation function. This enhancement aims to boost the discriminative capacity of the features learned by the model. Furthermore, we integrate batch normalization to stabilize the training process and enhance performance within smaller, less complex, CNN architectures like LeNet. Batch normalization addresses internal covariate shift, a phenomenon where the distribution of activations within a network alter during training. These modifications help to prevent overfitting and decrease computational time. A comprehensive dataset is used to evaluate the model’s performance, and the model is benchmarked against relevant deep-learning models. The results demonstrate a high recognition rate, with an accuracy of 96% in pneumonia image recognition. This research suggests that the Concatenated Modified LeNet classifier has the potential to be a highly useful tool for medical professionals in the diagnosis of pneumonia. By offering accurate and efficient image classification, our model could contribute to improved treatment decisions and patient outcomes.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3