Author:
Nonoshita Ko,Suzuki Yosuke,Tanaka Ryota,Kaneko Tetsuya,Ohchi Yoshifumi,Sato Yuhki,Yasuda Norihisa,Goto Koji,Kitano Takaaki,Itoh Hiroki
Abstract
AbstractWe aimed to construct a novel population pharmacokinetics (PPK) model of doripenem (DRPM) for Japanese patients in intensive care unit, incorporating the clearance of DRPM by continuous renal replacement therapy (CRRT). Twenty-one patients treated with DRPM (0.25 or 0.5 g) by intravenous infusion over 1 h were included in the study. Nine of the 21 patients were receiving CRRT. Plasma samples were obtained before and 1, 2, 4, 6 and 8 h after the first DRPM administration. PPK analysis was conducted by nonlinear mixed effects modeling using a two-compartment model. Total clearance (CLtotal) in the model was divided into CRRT clearance (CLCRRT) and body clearance (CLbody). The final model was: CLtotal (L h−1) = CLbody(non-CRRT) = 3.65 × (Ccr/62.25)0.64 in the absence of CRRT, or = CLbody(CRRT) + CLCRRT = 2.49 × (Ccr/52.75)0.42 + CLCRRT in the presence of CRRT; CLCRRT = QE × 0.919 (0.919 represents non-protein binding rate of DRPM); V1 (L) = 10.04; V2 (L) = 8.13; and Q (L h−1) = 3.53. Using this model, CLtotal was lower and the distribution volumes (V1 and V2) tended to be higher compared to previous reports. Also, Ccr was selected as a significant covariate for CLbody. Furthermore, the contribution rate of CLCRRT to CLtotal was 30–40%, suggesting the importance of drug removal by CRRT. The population analysis model used in this study is a useful tool for planning DRPM regimen and administration. Our novel model may contribute greatly to proper use of DRPM in patients requiring intensive care.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献