Printed temperature sensor array for high-resolution thermal mapping

Author:

Bücher Tim,Huber Robert,Eschenbaum Carsten,Mertens Adrian,Lemmer Uli,Amrouch Hussam

Abstract

AbstractFully-printed temperature sensor arrays—based on a flexible substrate and featuring a high spatial-temperature resolution—are immensely advantageous across a host of disciplines. These range from healthcare, quality and environmental monitoring to emerging technologies, such as artificial skins in soft robotics. Other noteworthy applications extend to the fields of power electronics and microelectronics, particularly thermal management for multi-core processor chips. However, the scope of temperature sensors is currently hindered by costly and complex manufacturing processes. Meanwhile, printed versions are rife with challenges pertaining to array size and sensor density. In this paper, we present a passive matrix sensor design consisting of two separate silver electrodes that sandwich one layer of sensing material, composed of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). This results in appreciably high sensor densities of 100 sensor pixels per cm$$^2$$ 2 for spatial-temperature readings, while a small array size is maintained. Thus, a major impediment to the expansive application of these sensors is efficiently resolved. To realize fast and accurate interpretation of the sensor data, a neural network (NN) is trained and employed for temperature predictions. This successfully accounts for potential crosstalk between adjacent sensors. The spatial-temperature resolution is investigated with a specially-printed silver micro-heater structure. Ultimately, a fairly high spatial temperature prediction accuracy of 1.22  °C is attained.

Funder

Deutsche Forschungsgemeinschaft

BMBF

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3