Weighted p-norm distance t kernel SVM classification algorithm based on improved polarization

Author:

Liu Wenbo,Liang Shengnan,Qin Xiwen

Abstract

AbstractThe kernel function in SVM enables linear segmentation in a feature space for a large number of linear inseparable data. The kernel function that is selected directly affects the classification performance of SVM. To improve the applicability and classification prediction effect of SVM in different areas, in this paper, we propose a weighted p-norm distance t kernel SVM classification algorithm based on improved polarization. A t-class kernel function is constructed according to the t distribution probability density function, and its theoretical proof is presented. To find a suitable mapping space, the t-class kernel function is extended to the p-norm distance kernel. The training samples are obtained by stratified sampling, and the affinity matrix is redefined. The improved local kernel polarization is established to obtain the optimal kernel weights and kernel parameters so that different kernel functions are weighted combinations. The cumulative optimal performance rate is constructed to evaluate the overall classification performance of different kernel SVM algorithms, and the significant effects of different p-norms on the classification performance of SVM are verified by 10 times fivefold cross-validation statistical comparison tests. In most cases, the results using 6 real datasets show that compared with the traditional kernel function, the proposed weighted p-norm distance t kernel can improve the classification prediction performance of SVM.

Funder

Natural Science Foundation of Guizhou Province Education Department

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3