Freshwater Aquaculture Mapping in “Home of Chinese Crawfish” by Using a Hierarchical Classification Framework and Sentinel-1/2 Data

Author:

Wang Chen12ORCID,Wang Genhou2,Zhang Geli1ORCID,Cui Yifeng34ORCID,Zhang Xi3,He Yingli34,Zhou Yan5ORCID

Affiliation:

1. College of Land Science and Technology, China Agricultural University, Beijing 100193, China

2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

3. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

5. College of Geography and Environmental Science, Henan University, Kaifeng 475004, China

Abstract

The escalating evolution of aquaculture has wielded a profound and far-reaching impact on regional sustainable development, ecological equilibrium, and food security. Currently, most aquaculture mapping efforts mainly focus on coastal aquaculture ponds rather than diverse inland aquaculture areas. Recognizing all types of aquaculture areas and accurately classifying different types of aquaculture areas remains a challenge. Here, on the basis of the Google Earth Engine (GEE) and the time-series Sentinel-1 and -2 data, we developed a novel hierarchical framework extraction method for mapping fine inland aquaculture areas (aquaculture ponds + rice-crawfish fields) by employing distinct phenological disparities within two temporal windows (T1 and T2) in Qianjiang, so-called “Home of Chinese Crawfish”. Simultaneously, we evaluated the classification performance of four distinct machine learning classifiers, namely Random Forest (RF), Support Vector Machine (SVM), Classification and Regression Trees (CART), and Gradient Boosting (GTB), as well as 11 feature combinations. Following an exhaustive comparative analysis, we selected the optimal machine learning classifier (i.e., the RF classifier) and the optimal feature combination (i.e., feature combination after an automated feature selection method) to classify the aquaculture areas with high accuracy. The results underscore the robustness of the proposed methodology, achieving an outstanding overall accuracy of 93.8%, with an F1 score of 0.94 for aquaculture. The result indicates that an area of 214.6 ± 10.5 km2 of rice-crawfish fields, constituting approximately 83% of the entire aquaculture area in Qianjiang, followed by aquaculture ponds (44.3 ± 10.7 km2, 17%). The proposed hierarchical framework, based on significant phenological characteristics of varied aquaculture types, provides a new approach to monitoring inland freshwater aquaculture in China and other regions of the world.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3