Utilization of silicon nanowire field-effect transistors for the detection of a cardiac biomarker, cardiac troponin I and their applications involving animal models

Author:

Chang Shih-Mein,Palanisamy Sathyadevi,Wu Tung-Ho,Chen Chiao-Yun,Cheng Kai-Hung,Lee Chen-Yi,Yuan Shyng-Shiou F.,Wang Yun-Ming

Abstract

AbstractThis study develops an ultrasensitive electrical device, the silicon nanowire-field effect transistor (SiNW-FET) for detection of cardiac troponin I (cTnI) in obesity induced myocardial injury. The biosensor device utilizes metal–oxide–semiconductor (MOS) compatible top-down methodology for the fabrication process. After fabrication, the surface of the SiNW is modified with the cTnI monoclonal antibody (Mab-cTnI) upon covalent immobilization to capture cTnI antigen. The sensitivity of the device is also examined using cTnI at different concentrations with the lowest detection limit of 0.016 ng/mL. The electrocardiogram (ECG), magnetic resonance imaging (MRI), and superior vena cave (SVC) provide more information about cardiac responses in a mouse model of acute myocardial infarction (AMI). Further, magnetic resonance imaging helps to evaluate the cardiac output of an obesity induced myocardial injury mouse model. These methods play an essential role in monitoring the obesity based cardiac injury and hence, these studies were carried out. This is the first report to use the ECG, MRI, and SVC sampling methods to study the obesity based cardiac injury involving Syrian hamsters as animal models. The proposed SiNW-FET in this study shows greater sensitivity than the previously developed devices and demonstrates great potential for future applications in point-of-care (POC) diagnosis.

Funder

Ministry of Science and Technology, Taiwan

Kaohsiung Medical University Research Center Grant

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3