Electrochemical detection of the cardiac biomarker cardiac troponin I

Author:

Qin Xiaoyun12,Li Dongyang3,Qin Xiaomei1,Chen Fenghua1,Guo Huishi1,Gui Yanghai1,Zhao Jianbo1,Jiang Liying3,Luo Dan2ORCID

Affiliation:

1. School of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou China

2. Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China

3. School of Electrical and Information Engineering Zhengzhou University of Light Industry Zhengzhou China

Abstract

AbstractAcute myocardial infarction (AMI) is a major cause of cardiovascular disease‐related death. It is essential for patients with cardiovascular disease to receive an early diagnosis of AMI. The most popular technique for the early detection of AMI is the use of biosensors to monitor the concentration of pertinent biomarkers, such as cardiac troponin I (cTnI), in the blood. The electrochemical detection methods hold great promise because of their simplicity, miniaturization, ease of integration, high sensitivity, and rapid response. The prime motive of this review is to present a comprehensive understanding of the pros and cons of methodologies employed for the electrochemical approaches toward the detection of cTnI. A detailed summary is provided for the immunosensors, aptamer sensors, molecular imprinting sensors, and peptide sensors based on various affinity elements. We enumerate the modified electrode materials for electrochemical sensors as well as popular detection techniques. Furthermore, this paper reviews some recent significant advances in point‐of‐care assays for rapid, accurate detection of cTnI as a smart integrated device for home monitoring. The accumulation of knowledge about these functions will lead to new insights into and concepts for the design of portable miniature sensors for cardiovascular patients at risk of AMI. It is anticipated that the interdisciplinary collaboration can bring more enlightenment to the progress of cardiac biomarkers sensor in the future.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3