Differentiable optimization layers enhance GNN-based mitosis detection

Author:

Zhang Haishan,Nguyen Dai Hai,Tsuda Koji

Abstract

AbstractAutomatic mitosis detection from video is an essential step in analyzing proliferative behaviour of cells. In existing studies, a conventional object detector such as Unet is combined with a link prediction algorithm to find correspondences between parent and daughter cells. However, they do not take into account the biological constraint that a cell in a frame can correspond to up to two cells in the next frame. Our model called GNN-DOL enables mitosis detection by complementing a graph neural network (GNN) with a differentiable optimization layer (DOL) that implements the constraint. In time-lapse microscopy sequences cultured under four different conditions, we observed that the layer substantially improved detection performance in comparison with GNN-based link prediction. Our results illustrate the importance of incorporating biological knowledge explicitly into deep learning models.

Funder

Japan Science and Technology Agency

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3