Label-Free Quality Control and Identification of Human Keratinocyte Stem Cells by Deep Learning-Based Automated Cell Tracking

Author:

Hirose Takuya1,Kotoku Jun'ichi1,Toki Fujio2,Nishimura Emi K.23,Nanba Daisuke2ORCID

Affiliation:

1. Graduate School of Medical Care and Technology, Teikyo University, Tokyo, Japan

2. Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan

3. Division of Aging and Regeneration, Institute of Medical Science, The University of Tokyo, Tokyo, Japan

Abstract

Abstract Stem cell-based products have clinical and industrial applications. Thus, there is a need to develop quality control methods to standardize stem cell manufacturing. Here, we report a deep learning-based automated cell tracking (DeepACT) technology for noninvasive quality control and identification of cultured human stem cells. The combination of deep learning-based cascading cell detection and Kalman filter algorithm-based tracking successfully tracked the individual cells within the densely packed human epidermal keratinocyte colonies in the phase-contrast images of the culture. DeepACT rapidly analyzed the motion of individual keratinocytes, which enabled the quantitative evaluation of keratinocyte dynamics in response to changes in culture conditions. Furthermore, DeepACT can distinguish keratinocyte stem cell colonies from non-stem cell-derived colonies by analyzing the spatial and velocity information of cells. This system can be widely applied to stem cell cultures used in regenerative medicine and provides a platform for developing reliable and noninvasive quality control technology.

Funder

Grand-in-Aid for Scientific Research on Innovative Area “Singularity Biology (No.8007)” of The Ministry of Education, Culture, Sports, Science, and Technology, Japan

Japan Society for the Promotion of Science

Okawa Foundation for Information and Telecommunications

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3