Machine learning-based technique for gain and resonance prediction of mid band 5G Yagi antenna

Author:

Haque Md. Ashraful,Rahman Md Afzalur,Al-Bawri Samir Salem,Yusoff Zubaida,Sharker Adiba Haque,Abdulkawi Wazie M.,Saha Dipon,Paul Liton Chandra,Zakariya M. A.

Abstract

AbstractIn this study, we present our findings from investigating the use of a machine learning (ML) technique to improve the performance of Quasi-Yagi–Uda antennas operating in the n78 band for 5G applications. This research study investigates several techniques, such as simulation, measurement, and an RLC equivalent circuit model, to evaluate the performance of an antenna. In this investigation, the CST modelling tools are used to develop a high-gain, low-return-loss Yagi–Uda antenna for the 5G communication system. When considering the antenna’s operating frequency, its dimensions are $${0.642}\lambda _0\times {0.583}\lambda _0$$ 0.642 λ 0 × 0.583 λ 0 . The antenna has an operating frequency of 3.5 GHz, a return loss of $$-43.45$$ - 43.45 dB, a bandwidth of 520 MHz, a maximum gain of 6.57 dB, and an efficiency of almost 97%. The impedance analysis tools in CST Studio’s simulation and circuit design tools in Agilent ADS software are used to derive the antenna’s equivalent circuit (RLC). We use supervised regression ML method to create an accurate prediction of the frequency and gain of the antenna. Machine learning models can be evaluated using a variety of measures, including variance score, R square, mean square error, mean absolute error, root mean square error, and mean squared logarithmic error. Among the nine ML models, the prediction result of Linear Regression is superior to other ML models for resonant frequency prediction, and Gaussian Process Regression shows an extraordinary performance for gain prediction. R-square and var score represents the accuracy of the prediction, which is close to 99% for both frequency and gain prediction. Considering these factors, the antenna can be deemed an excellent choice for the n78 band of a 5G communication system.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3