Gap coupled symmetric split ring resonator based near zero index ENG metamaterial for gain improvement of monopole antenna

Author:

Moniruzzaman Md.,Islam Mohammad Tariqul,Samsuzzaman Md.,M M. Salaheldeen,Sahar Norsuzlin Mohd,Al-Bawri Samir Salem,Almalki Sami H. A.,Alsaif Haitham,Islam Md. Shabiul

Abstract

AbstractIn this article, a symmetric split ring resonator (SRR) based metamaterial (MTM) is presented that exhibits three resonances of transmission coefficient (S21) covering S, C, and X-bands with epsilon negative (ENG) and near zero index properties. The proposed MTM is designed on an FR4 substrate with the copper resonator at one side formed with two square rings and one circular split ring. The two square rings are coupled together around the split gap of the outer ring, whereas two split semicircles are also coupled together near the split gaps. Thus, gap coupled symmetric SRR is formed, which helps to obtain resonances at 2.78 GHz, 7.7 GHz and 10.16 GHz with desired properties of the MTM unit cell. The MTM unit cell's symmetric nature helps reduce the mutual coupling effect among the array elements. Thus, different array of unit cells provides a similar response to the unit cell compared with numerical simulation performed in CST microwave studio and validated by measurement. The equivalent circuit is modelled for the proposed MTM unit cell in Advanced Design System (ADS) software, and circuit validation is accomplished by comparing S21 obtained in ADS with the same of CST. The effective medium ratio (EMR) of 10.7 indicates the compactness of the proposed MTM. A test antenna is designed to observe the effect of the MTM over it. Numerical analysis shows that the proposed MTM have an impact on the antenna when it is used as the superstrate and helps to increase the gain of the antenna by 95% with increased directivity. Thus, compact size, high EMR, negative permittivity, near zero permeability and refractive index makes this MTM suitable for S, C and X band applications, especially for antenna gain with directivity enhancement.

Funder

Universiti Kebangsaan Malaysia

Taif University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3