Integrative transcriptomic and gene co-expression network analysis of host responses upon Verticillium dahliae infection in Gossypium hirsutum

Author:

Zhang Guoli,Zhao Zengqiang,Ma Panpan,Qu Yanying,Sun Guoqing,Chen Quanjia

Abstract

AbstractWorldwide, Verticillium wilt is among the major harmful diseases in cotton production, causing substantial reduction in yields. While this disease has been extensively researched at the molecular level of the pathogen, the molecular basis of V. dahliae host response association is yet to be thoroughly investigated. In this study, RNA-seq analysis was carried out on V. dahliae infected two Gossypium hirsutum L. cultivars, Xinluzao-36 (susceptible) and Zhongzhimian-2 (disease resistant) for 0 h, 24 h, 72 h and 120 h time intervals. Statistical analysis revealed that V. dahliae infection elicited differentially expressed gene responses in the two cotton varieties, but more intensely in the susceptible cultivar than in the resistant cultivars. Data analysis revealed 4241 differentially expressed genes (DEGs) in the LT variety across the three treatment timepoints whereas 7657 in differentially expressed genes (DEGs) in the Vd592 variety across the three treatment timepoints. Six genes were randomly selected for qPCR validation of the RNA-Seq data. Numerous genes encompassed in disease resistance and defense mechanisms were identified. Further, RNA-Seq dataset was utilized in construction of the weighted gene co-expression network and 11 hub genes were identified, that encode for different proteins associated with lignin and immune response, Auxin response factor, cell wall and vascular development, microtubule, Ascorbate transporter, Serine/threonine kinase and Immunity and drought were identified. This significant research will aid in advancing crucial knowledge on virus-host interactions and identify key genes intricate in G. hirsutum L. resistance to V. dahliae infection.

Funder

National Key Research and Development Program of China

Project of Innovation Team Building in Key Areas of Xinjiang Production and Construction Corps

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3