Author:
Sun Quan,Jiang Huaizhong,Zhu Xiaoyan,Wang Weina,He Xiaohong,Shi Yuzhen,Yuan Youlu,Du Xiongming,Cai Yingfan
Abstract
Abstract
Background
Cotton Verticillium wilt is a serious soil-borne vascular disease that causes great economic loss each year. However, due to the lack of resistant varieties of upland cotton, the molecular mechanisms of resistance to this disease, especially to the pathogen Verticillium dahliae, remain unclear.
Results
We used the RNA-seq method to research the molecular mechanisms of cotton defence responses to different races of Verticillium dahliae by comparing infected sea-island cotton and upland cotton. A total of 77,212 unigenes were obtained, and the unigenes were subjected to BLAST searching and annotated using the GO and KO databases. Six sets of digital gene expression data were mapped to the reference transcriptome. The gene expression profiles of cotton infected with Verticillium dahliae were compared to those of uninfected cotton; 44 differentially expressed genes were identified. Regarding genes involved in the phenylalanine metabolism pathway, the hydroxycinnamoyl transferase gene (HCT) was upregulated in upland cotton whereas PAL, 4CL, CAD, CCoAOMT, and COMT were upregulated in sea-island cotton. Almost no differentially expressed genes in this pathway were identified in sea-island cotton and upland cotton when they were infected with V. dahliae V991 and V. dahliae D07038, respectively.
Conclusions
Our comprehensive gene expression data at the transcription level will help elucidate the molecular mechanisms of the cotton defence response to V. dahliae. By identifying the genes involved in the defence response of each type of cotton to V. dahliae, our data not only provide novel molecular information for researchers, but also help accelerate research on genes involved in defences in cotton.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Sal'kova EG, Guseva NN: The role of pectolyitc enzymes of the Verticillium dahliae fungus in the development of cotton wilt. Dokl Akad Nauk SSSR. 1965, 163: 515-522.
2. Sink KC, Grey WE: A root-injection method to assess Verticillium wilt resistance of peppermint (Mentha × piperita L.) and its use in identifying resistant somaclones of cv. Black Mitcham. Euphytica. 1999, 106 (3): 223-230. 10.1023/A:1003591908308.
3. Du W-S, Du X, Ma Z: Progress of Inheritance and Molecular Biology of Verticillium wilt resistance in Cotton. Cotton Sci. 2002, 14 (5): 55-61.
4. Bugbee W, Sappenfield W: Effect of Verticillium wilt on cotton yield, fiber properties, and seed quality. Crop Sci. 1970, 10 (6): 649-652. 10.2135/cropsci1970.0011183X001000060011x.
5. Cai Y, Xiaohong H, Mo J, Sun Q, Yang J, Liu J: Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: a review. Afr J Biotechnol. 2009, 8 (25): 7363-7372.
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献