Mapping genomic regions of moisture deficit stress tolerance using backcross inbred lines in wheat (Triticum aestivum L.)

Author:

Puttamadanayaka Shashikumara,Harikrishna ,Balaramaiah Manu,Biradar Sunil,Parmeshwarappa Sunilkumar V.,Sinha Nivedita,Prasad S. V. Sai,Mishra P. C.,Jain Neelu,Singh Pradeep Kumar,Singh Gyanendra Pratap,Prabhu Kumble Vinod

Abstract

AbstractIdentification of markers associated with major physiological and yield component traits under moisture deficit stress conditions in preferred donor lines paves the way for marker-assisted selection (MAS). In the present study, a set of 183 backcross inbred lines (BILs) derived from the cross HD2733/2*C306 were genotyped using 35K Axiom genotyping array and SSR markers. The multi-trait, multi-location field phenotyping of BILs was done at three locations covering two major wheat growing zones of India, north-western plains zone (NWPZ) and central zone (CZ) under varying moisture regimes. A linkage map was constructed using 705 SNPs and 86 SSR polymorphic markers. A total of 43 genomic regions and QTL × QTL epistatic interactions were identified for 14 physiological and yield component traits, including NDVI, chlorophyll content, CT, CL, PH, GWPS, TGW and GY. Chromosomes 2A, 5D, 5A and 4B harbors greater number of QTLs for these traits. Seven Stable QTLs were identified across environment for DH (QDh.iari_6D), GWPS (QGWPS.iari_5B), PH (QPh.iari_4B-2, QPh.iari_4B-3) and NDVI (QNdvi1.iari_5D,QNdvi3.iari_5A). Nine genomic regions identified carrying major QTLs for CL, NDVI, RWC, FLA, PH, TGW and biomass explaining 10.32–28.35% of the phenotypic variance. The co-segregation of QTLs of physiological traits with yield component traits indicate the pleiotropic effects and their usefulness in the breeding programme. Our findings will be useful in dissecting genetic nature and marker-assisted selection for moisture deficit stress tolerance in wheat.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3