Marker-assisted selection for transfer of QTLs to a promising line for drought tolerance in wheat (Triticum aestivum L.)

Author:

Sunilkumar V. P.,Krishna Hari,Devate Narayana Bhat,Manjunath Karthik Kumar,Chauhan Divya,Singh Shweta,Sinha Nivedita,Singh Jang Bahadur,T. L. Prakasha,Pal Dharam,Sivasamy M.,Jain Neelu,Singh Gyanendra Pratap,Singh Pradeep Kumar

Abstract

Wheat crop is subjected to various biotic and abiotic stresses, which affect crop productivity and yield. Among various abiotic stresses, drought stress is a major problem considering the current global climate change scenario. A high-yielding wheat variety, HD3086, has been released for commercial cultivation under timely sown irrigated conditions for the North Western Plain Zone (NWPZ) and North Eastern Plain Zone NEPZ of India. Presently, HD3086 is one of the highest breeder seed indented wheat varieties and has a stable yield over the years. However, under moisture deficit conditions, its potential yield cannot be achieved. The present study was undertaken to transfer drought-tolerant QTLs in the background of the variety HD3086 using marker-assisted backcross breeding. QTLs governing Biomass (BIO), Canopy Temperature (CT), Thousand Kernel Weight (TKW), Normalized Difference Vegetation Index (NDVI), and Yield (YLD) were transferred to improve performance under moisture deficit conditions. In BC1F1, BC2F1, and BC2F2 generations, the foreground selection was carried out to identify the plants with positive QTLs conferring drought tolerance and linked to traits NDVI, CT, TKW, and yield. The positive homozygous lines for targeted QTLs were advanced from BC2F2 to BC2F4via the pedigree-based phenotypic selection method. Background analysis was carried out in BC2F5 and obtained 78-91% recovery of the recurrent parent genome in the improved lines. Furthermore, the advanced lines were evaluated for 2 years under drought stress to assess improvement in MABB-derived lines. Increased GWPS, TKW, and NDVI and reduced CT was observed in improved lines. Seven improved lines were identified with significantly higher yields in comparison to HD3086 under stress conditions.

Funder

Bill and Melinda Gates Foundation

Publisher

Frontiers Media SA

Subject

Plant Science

Reference84 articles.

1. Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress;Acuña-Galindo;Crop Sci.,2015

2. Physiological, biochemical and agronomic traits associated with drought tolerance in a synthetic-derived wheat diversity panel;Afzal;Crop Pasture Sci.,2017

3. Breeding for yield potential and stress adaptation in cereals;Araus;Crit. Rev. Plant Sci.,2008

4. AravindJ. Mukesh SankarS. WankhedeD. P. KaurV. augmentedRCBD: analysis of augmented randomised complete block designs2021

5. Wheat yield potential in controlled-environment vertical farms;Asseng;Proc. Natl. Acad. Sci.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3