Impaired differentiation potential of CD34-positive cells derived from mouse hair follicles after long-term culture

Author:

Ouji Yukiteru,Misu Masayasu,Kitamura Tomotaka,Okuzaki Daisuke,Yoshikawa Masahide

Abstract

AbstractHair follicle epithelial stem cells (HFSCs), which exist in the bulge region, have important functions for homeostasis of skin as well as hair follicle morphogenesis. Although several methods for isolation of HFSCs using a variety of stem cell markers have been reported, few investigations regarding culture methods or techniques to yield long-term maintenance of HFSCs in vitro have been conducted. In the present study, we screened different types of commercially available culture medium for culturing HFSCs. Among those tested, one type was shown capable of supporting the expression of stem cell markers in cultured HFSCs. However, both the differentiation potential and in vivo hair follicle-inducing ability of HFSCs serially passaged using that optimal medium were found to be impaired, probably because of altered responsiveness to Wnt signaling. The changes noted in HFSCs subjected to a long-term culture suggested that the Wnt signaling-related environment must be finely controlled for maintenance of the cells.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3